Prof. Amador Martin-Pizarro EXERCISES: CHARLOTTE AMANN-BARTNICK Albert-Ludwigs-Universität Freiburg Winter term 2025/2026

Model Theory

Sheet 3

Deadline: 06.11.25, 2:30 pm.

Exercise 1 (4 points).

Given an \mathcal{L} -structure \mathcal{A} , choose for every \mathcal{L} -formula $\varphi[x_1,\ldots,x_n]$ a new n-ary relation-symbol R_{φ} . Denote by \mathcal{L}' the expansion of \mathcal{L} by these relation-symbols. The structure \mathcal{A} is now viewed as an \mathcal{L}' -structure \mathcal{A}' as follows: The tuple (a_1,\ldots,a_n) lies in $R_{\varphi}^{\mathcal{A}'}$ if and only if $\mathcal{A} \models \varphi[a_1,\ldots,a_n]$.

- a) Show by induction on the complexity of the formula that for every \mathcal{L}' -formula $\psi[x_1,\ldots,x_n]$ there exists an \mathcal{L} -formula $\theta[x_1,\ldots,x_n]$ such that $\mathcal{A}' \models \forall \bar{x}(\psi[\bar{x}] \leftrightarrow \theta[\bar{x}])$.
- b) Does the theory Th(A') have quantifier elimination?

Exercise 2 (8 points).

In the language $\mathcal{L} = \{0, s\}$ with a unary function symbol s let $\mathcal{Z} = (\mathbb{Z}, 0^{\mathcal{Z}}, s^{\mathcal{Z}})$ be the \mathcal{L} -structure where $s^{\mathcal{Z}}(x) = x + 1$ is interpreted as the successor function. Note that $s^{\mathcal{Z}}$ satisfies the following properties: s is bijective (χ_0) and for all n>0 there is no element x such that $s^n(x)=x$, where s^n denotes the *n*-fold composition (χ_n) .

- a) The following equivalence relation can be defined on models of $Th(\mathcal{Z})$: Two elements x and y are related if there exists a natural number n from N such that $s^n(x) = y$ or $s^n(y) = x$ (where s^0 denotes the identity map).
 - Show that there is an elementary extension \mathcal{Z}' of \mathcal{Z} with an element that is not related to $0^{\mathcal{Z}}$.
- b) Using the ideas of a), show that the collection $\{\chi_n \mid n \in \mathbb{N}\}$ (formulated as \mathcal{L} -sentences) is complete with quantifier elimination. Conclude that $Th(\mathcal{Z})$ has an explicit axiomatization.

Exercise 3 (3 points).

In the language $\mathcal{L} = \{<\}$ consider the \mathcal{L} -structure \mathcal{R} with universe \mathbb{R} and the canonical linear order. Let \mathcal{U} be a non-principal ultrafilter on \mathbb{N} . Every element from \mathbb{R} can be identified with an element in the ultrapower $\mathcal{R}^{\mathcal{U}}$, whose universe is $\prod_{\mathcal{U}} \mathbb{R}$, since $\mathcal{R}^{\mathcal{U}}$ is an elementary extension of \mathcal{R} . Show that there exists a sequence $(\zeta_n)_{n\in\mathbb{N}}$ in $\mathcal{R}^{\mathcal{U}}$ such that $0<^{\mathcal{R}^{\mathcal{U}}}\zeta_{n+1}<^{\mathcal{R}^{\mathcal{U}}}\zeta_n<^{\mathcal{R}^{\mathcal{U}}}r$ for every

element r > 0 from \mathbb{R} .

Exercise 4 (5 points).

Let \mathcal{A} be an \mathcal{L} -structure and $C \subset B \subset A$. Denote by $S_n^{\mathcal{A}}(B)$ the set of all complete n-types in \mathcal{A} over B and consider the map restr : $S_n^{\mathcal{A}}(B) \to S_n^{\mathcal{A}}(C)$ given by restriction: For \bar{c} in C and an \mathcal{L} -formula $\phi[\bar{x}, \bar{y}]$, the instance $\phi[\bar{x}, \bar{c}]$ is in restr(p) if $\phi[\bar{x}, \bar{c}]$ (viewed as a B-instance) is in p.

- a) Show that the map restr is well-defined.
- b) Using Zorn's Lemma show that restr is surjective.

The exercise sheets can be handed in in pairs. Submit them in the mailbox 3.19 in THE BASEMENT OF THE MATHEMATICAL INSTITUTE.